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ABSTRACT

A method for detecting pitched/unpitched sound is 
presented. The method tracks the pitch strength trace of 
the signal, determining clusters of pitch and unpitched 
sound. The criterion used to determine the clusters is the 
local maximization of the distance between the centroids. 
The method makes no assumption about the data except 
that the pitched and unpitched clusters have different 
centroids. This allows the method to dispense with free 
parameters. The method is shown to be more reliable than 
using fixed thresholds when the SNR is unknown. 

1. INTRODUCTION

Pitch is a perceptual phenomenon that allows ordering 
sounds in a musical scale. However, not all sounds have 
pitch. When we speak or sing, some sounds produce a 
strong pitch sensation (e.g., vowels), but some do not 
(e.g., most consonants). This classification of sounds into 
pitched and unpitched is useful in applications like music 
transcription, query by humming, and speech coding. 

Most of the previous research on pitched/unpitched 
(P/U) sound detection has focused on speech. In this 
context, the problem is usually referred as the 
voiced/unvoiced (V/U) detection problem, since voiced 
speech elicits pitch, but unvoiced speech does not. Some 
of the methods that have attempted to solve this problem 
are pitch estimators that, as an aside, make V/U decisions 
based on the degree of periodicity of the signal 
[3,7,8,11]1. Some other methods have been designed 
specifically to solve the V/U problem, using statistical 
inference on the training data [1,2,10]. Most methods use 
static rules (fixed thresholds) to make the V/U decision, 
ignoring possible variations in the noise level. To the best 
of our knowledge, the only method deals with non-
stationary noise makes strong assumptions about the 
distribution of V/U sounds2, and requires the 

                                                           

                                                                                               

1 Pitch strength and degree of periodicity of the signal are highly 
correlated. 
2 It assumes that the autocorrelation function at the lag 
corresponding to the pitch period is a stochastic variable whose 

determination of a large number of parameters for those 
distributions [5]. 

The method presented here aims to solve the P/U 
problem using a dynamic two-means clustering of the 
pitch strength trace. The method favors temporal locality 
of the data, and adaptively determines the clusters’ 
centroids by maximizing the distance between them. The 
method does not make any assumption about the 
distribution of the classes except that the centroids are 
different. A convenient property of the method is that it 
dispenses with free parameters. 

2. METHOD

2.1. Formulation

A reasonable measure for doing P/U detection is the pitch 
strength of the signal. We estimate pitch strength using 
the SWIPE  algorithm [4], which estimates the pitch 
strength at (discrete) time n as the spectral similarity 
between the signal (in the proximity of n) and a sawtooth 
waveform with missing non-prime harmonics and same 
(estimated) pitch as the signal. 

In the ideal scenario in which the noise is stationary 
and the pitch strength of the non-silent regions of the 
signal is constant, the pitch strength trace of the signal 
looks like the one shown in Figure 1(a). Real scenarios 
differ from the ideal in at least four aspects: (i) the 
transitions between pitched and non-pitched regions are 
smooth; (ii) different pitched utterances have different 
pitch strength; (iii) different unpitched utterances have 
different pitch strength; and (iv) pitch strength within an 
utterance varies over time. All these aspects are 
exemplified in the pitch strength trace shown in Figure 
1(b). 

The first aspect poses an extra problem which is the 
necessity of adding to the model a third class representing 
transitory regions. Adding this extra class adds significant 
complexity to the model, which we rather avoid and  
 

 
p.d.f. follows a normal distribution for unvoiced speech, and a 
reflected and translated chi-square distribution for voiced speech. 
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Figure 1. Pitch strength traces. (a) Ideal. (b) Real. 
 

instead opt for assigning samples in the transitory region 
to the class whose centroid is closest. The second and 
third aspects make the selection of a threshold to separate 
the classes non trivial. The fourth aspect makes this 
selection even harder, since an utterance whose pitch 
strength is close to the threshold may oscillate between 
the two classes, which for some applications may be even 
worst than assigning the whole utterance to the wrong 
class. 

Our approach for solving the P/U detection problem is 
the following. At every instant of time n, we determine 
the optimal assignment of classes (P/U) to samples in the 
neighborhood of n, using as optimization criterion the 
maximization of the distance between the centroids of the 
classes. Then, we label n with the class whose pitch-
strength centroid is closer to the pitch strength at time n. 

To determine the optimal class assignment for each 
sample n  in the neighborhood of n, we first weight the 
samples using a Hann window of size 2N+1 centered at n: 
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for | n n |  N , and 0 otherwise. 
We represent an assignment of classes to samples by 

the membership function  (n )  {0,1} ( n ), where 
 (n ) = 1 means that the signal at n  is pitched ( n ), and 
 (n ) = 0 means that the signal at n  is unpitched ( n ). 

Given an arbitrary assignment  of classes to samples, an 
arbitrary N, and a pitch strength time series s(n ), we 
determine the centroid of the pitched class in the 
neighborhood of n as 
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the centroid of the unpitched class as  

 

Figure 2. Pitch and unpitched classes centroids and their 
midpoint. 
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and the optimal membership function and parameter N as 
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Finally, we determine the class membership of the signal 
at time n as 
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where [·] is the Iverson bracket (i.e., it produces a value of 
one if the bracketed proposition is true, and zero 
otherwise). 

Figure 2 illustrates how the classes’ centroids and their 
midpoint vary over time for the pitch strength trace in 
Figure 1(b). Note that the centroid of the pitched class 
follows the tendency to increase over time that the overall 
pitch strength of the pitched sounds have in this trace. 
Note also that the speech is highly voiced between 0.7 and 
1.4 sec (although with a gap at 1.1 sec). This makes the 
overall pitch strength increase in this region, which is 
reflected by a slight increase in the centroid of both 
classes in that region. The classification output for this 
pitch strength trace is the same as the one shown in Figure 
1(a), which consists of a binary approximation of the 
original pitch strength trace. 

2.2. Implementation

For the algorithm to be of practical use, the domains of N 
and  in Equation 4 need to be restricted to small sets. In 
our implementation, we define the domain of N 
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recursively, starting at a value of 1 and geometrically 
increasing its value by a factor of 21/4, until the size of the 
pitch strength trace is reached. Non-integer values of N 
are rounded to the closest integer. 

The search of  * is performed using the Loyd’s 
algorithm (a.k.a. k-means) [6]. Although the goal of 
Loyd’s algorithm is to minimize the variance within the 
classes, in practice it tends to produce iterative increments 
in the distance between the centroids of the classes as 
well, which is our goal. We initialize the pitched class 
centroid to the maximum pitch strength observed in the 
window, and the unpitched class centroid to the minimum 
pitch strength observed in the window. We stop the 
algorithm when  reaches a fixed point (i.e., when it stops 
changing) or after 100 iterations. Typically, the former 
condition is reached first. 

2.3. Postprocessing

When the pitch strength is close to the middle point 
between the centroids, undesired switchings between 
classes may occur. A situation that we consider 
unacceptable is the adjacency of a pitched segment to an 
unpitched segment such that the pitch strength of the 
pitched segment is completely below the pitch strength of 
the unpitched segment (i.e., the maximum pitch strength 
of the pitched segment is less than the minimum pitch 
strength of the unpitched segment). This situation can be 
corrected by relabeling one of the segments with the label 
of the other. For this purpose, we track the membership 
function m(n) from left to right (i.e., by increasing n) and 
whenever we find the aforementioned situation, we 
relabel the segment to the left with the label of the 
segment to the right. 

3. EVALUATION

3.1. Data Sets 

Two speech databases were used to test the algorithm: 
Paul Bagshaw’s Database (PBD) (available online at 
http://www.cstr.ed.ac.uk/research/projects/fda) and Keele 
Pitch Database (KPD) [9], each of them containing about 
8 minutes of speech. PBD contains speech produced by 
one female and one male, and KPD contains speech 
produced by five females and five males. Laryngograph 
data was recorded simultaneously with speech and was 
used by the creators of the databases to produce 
fundamental frequency estimates. They also identified 
regions where the fundamental frequency was inexistent. 
We regard the existence of fundamental frequency 
equivalent to the existence of pitch, and use their data as 
ground truth for our experiments.  

 

Figure 3. Pitch strength histogram for each database/SNR 
combination. 

3.2. Experiment Description 

We tested our method against an alternative method on 
the two databases described above.  The alternative 
method consisted in using a fixed threshold, which is 
commonly used in the literature [3,7,8,11]. Six different 
pitch strength thresholds were explored: 0, 0.01, 0.02, 
0.05, 0.10, and 0.20., based on the plots of Figure 3. This 
figure shows pitch strength histograms for each of the 
speech databases, at three different SNR levels: , 10, and 
0 dB.  

3.3. Results

Table 1 shows the error rates obtained using our method 
(dynamic threshold) and the alternative methods (fixed 
thresholds) on the PBD database, for seven different 
SNRs and the six proposed thresholds. Table 2 shows the 
error rates obtained on the KPD database. On average, our 
method performed best in both databases (although for 
some SNRs some of the alternative methods outperformed 
our method, they failed to do so at other SNRs, producing 
overall a larger error when averaged over all SNRs). 
These results show that our method is more robust to 
changes in SNR. 

The right-most column of Tables 1 and 2 shows the 
(one-tail) p-values associated to the difference in the 
average error rate between our method and each of the 
alternative methods. Some of these p-values are not 
particularly high compared to the standard significance 
levels used in the literature (0.05 or 0.01). However, it 
should be noted that these average error rates are based on 
7 samples, which is a small number compared to the 
number of samples typically used in statistical analyses. 

To increase the significance level of our results we 
combined the data of Tables 1 and 2 to obtain a total of 14 
samples per method. The average error rates and their 
associated p-values are shown in Table 3. By using this  
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 Error rate (%)  
Threshold \ SNR (dB) 0 3 6 10 15 20  Average P-value 
0 41.0 11.0 7.4 8.7 13.0 16.0 33.0 18.6 0.10 
0.01 51.0 17.0 7.7 7.4 10.0 12.0 23.0 18.3 0.14 
0.02 56.0 30.0 9.6 6.9 8.1 9.4 15.0 19.3 0.14 
0.05 58.0 57.0 30.0 8.9 6.5 6.6 7.6 24.9 0.09 
0.10 58.0 58.0 58.0 39.0 10.0 7.5 5.7 33.7 0.03 
0.20 58.0 58.0 58.0 58.0 57.0 36.0 14.0 48.4 0.00 
Dynamic 24.0 13.0 9.3 7.7 7.2 7.2 8.4 11.0  

Table 1. Error rates on Paul Bagshaw’s Database 

 
 Error rate (%)  
Threshold \ SNR (dB) 0 3 6 10 15 20  Average P-value 
0 20.0 12.0 13.0 11.0 23.0 26.0 26.0 18.7 0.04 
0.01 29.0 13.0 10.0 12.0 15.0 17.0 17.0 16.1 0.13 
0.02 40.0 18.0 11.0 10.0 11.0 12.0 12.0 16.3 0.23 
0.05 50.0 43.0 20.0 11.0 8.7 8.6 8.7 21.4 0.13 
0.10 50.0 50.0 50.0 28.0 13.1 11.0 9.6 30.2 0.03 
0.20 50.0 50.0 50.0 50.0 47.0 32.0 19.0 42.6 0.00 
Dynamic 21.0 15.0 12.0 10.0 10.0 10.0 12.0 12.9  

Table 2. Error rates on Keele Pitch Database 
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Figure 4. Error rates on Paul Bagshaw’s Database 
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Figure 5. Error rates on Keele Pitch Database 
 

Threshold Average error rate P-value 
0 18.7 0.02 
0.01 17.2 0.06 
0.02 17.8 0.08 
0.05 23.2 0.03 
0.10 32.0 0.00 
0.20 45.5 0.00 
Dynamic 11.9  

Table 3. Average error rates using both databases (PBD 
and KPD) 

 
Threshold Average error rate P-value 
0 15.6 0.00 
0.01 14.6 0.05 
0.02 15.3 0.05 
0.05 21.5 0.00 
0.10 33.1 0.00 
0.20 50.7 0.00 
Dynamic 11.1  

Table 4. Average interpolated error rates using both 
databases (PBD and KPD) 
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approach, the p-values were reduced by at least a factor of 
two with respect to the smallest p-value when the 
databases were considered individually. 

Another alternative to increase the significance of our 
results is to compute the error rates for a larger number of 
SNRs. However, the high computational complexity of 
computing the pitch strength traces and the P/U centroids 
for a large variety of SNR makes this approach unfeasible. 
Fortunately, there is an easier approach which consists in 
utilizing the already computed error rates to interpolate 
the error rates for other SNR levels. Figures 4 and 5 show 
curves based on the error rates of Tables 1 and 2 (the error 
rate curve of our dynamic threshold method is the thick 
dashed curve). These curves are relatively predictable: 
each of them starts with a plateau, then the error decrease 
abruptly to a valley, and finally has a slow increase at the 
end. This suggests that error levels can be approximated 
using interpolation. 

We used linear interpolation to estimate the error rates 
for SNRs between 0 dB and 20 dB, using steps of 1 dB, 
for a total number of 21 steps. Then, we compiled the 
estimated errors of each database to obtain a total of 42 
error rates per method. The average of these error rates 
and the p-values associated to the difference between the 
average error rate of our method and the alternative 
methods are shown in Table 4. Based on these p-values, 
all differences are significant at the 0.05 level. 

4. CONCLUSION

We presented an algorithm for pitched/unpitched sound 
detection. The algorithm works by tracking the pitch 
strength trace of the signal, searching for clusters of pitch 
and unpitched sound. One valuable property of the 
method is that it does not make any assumption about the 
data, other than having different mean pitch strength for 
the pitched and unpitched clusters, which allows the 
method to dispense with free parameters. The method was 
shown to produce better results than the use of fixed 
thresholds when the SNR is unknown. 
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