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ABSTRACT

The problem of identifying singers in music recordings 
has received considerable attention with the explosive 
growth of the Internet and digital media. Although a 
number of studies on automatic singer identification from 
acoustic features have been reported, most systems to date, 
however, reliably establish the identity of singers in solo 
recordings only. The research presented in this paper 
attempts to automatically identify singers in music 
recordings that contain overlapping singing voices. Two 
approaches to overlapping singer identification are 
proposed and evaluated. Results obtained demonstrate the 
feasibility of the systems. 

1. INTRODUCTION 

In music recordings, the singing voice usually catches the 
listener's attention better than other musical attributes such 
as instrumentation or tonality. The singer’s information, 
therefore, is essential to people for organizing, browsing, 
and retrieving music recordings. Most people use singer’s 
voice as a primary cue for identifying songs, and 
performing such a task is almost effortless. However, 
building a robust automatic singer identification system is 
a difficult problem for machine learning. One of the 
challenges lies in training the system to discriminate 
among the different sources of sounds in music recordings, 
which may include background vocal, instrumental 
accompaniment, background noise, and simultaneous, or 
overlapping singings.  

Although studies on automatic singer identification 
from acoustic features have been reported, most systems 
to date, however, reliably establish the identity of singers 
from recordings of solo performances only [1][2][3]. Tsai 
et al., in [4], investigated automatic detection and tracking 
of multiple singers in music recordings. However, the 
study only considered singing by multiple singers who 
performed in a non-overlapping matter. Other works 
related to the problem of singer identification include 
speech overlapping [5][6] in multi-speakers environments 
and voice separation from music accompaniment [7][8]. 

The research presented here attempts to automatically 
identify singers in music recordings that contain both 
simultaneous and non-simultaneous singings. We refer to 
this problem as overlapping singer identification (OSID).  

2. APPLICATIONS 

OSID can be applied in a number of areas. For example, a 
successful OSID system can be used as an automatic tool 
to locate, identify, and index singers in music recordings, 
thus reducing, if not replacing, human documentation 
efforts. OSID, moreover, can be applied in the context of 
karaoke. A personalized Karaoke system has been 
developed by Hua et al. [9] to create background visual 
content using home video and/or photo collections. As an 
extension to the current Karaoke system, OSID can be 
used to identify and index singers in their recorded 
karaoke songs, and using intelligent transformation and 
transition effects, the singing portions can be aligned with 
the respective singer's home video and/or photo 
collections to create a seamless personalize music video. 
In addition, OSID can be applied in the area of copyright 
protection and enforcement. Content description such as 
singer names, among many other metadata, is 
fundamental to the content and rights managements of 
digital music. OSID can be applied to generate singer 
information automatically and be integrated into the 
existing protection technologies to enhance the current 
copyright protection solutions.  

3. PROBLEM FORMULATION 

Since it is difficult to consider all application scenarios in 
an initial development stage, we began this research by 
identifying the important factors that influence the 
effectiveness of OSID. We then defined the scope of this 
preliminary study. The factors we identified include the 
following: 

i) Multiplicity. Depending on the number of singers, a 
music recording may be classified as a pure 
instrumental, solo, duet, trio, band, or choral 
performance. In general, the complexity of an OSID 
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problem grows as the number of singers in a music   
recording increases. This study focuses on vocal duets, 
i.e., the OSID system determines the identity of a 
singer or singers who sang in a given music recording. 

ii) Overlapping duration percentage. Although two 
singers perform a duet, they may not always be 
singing simultaneously. Therefore, an excerpt from a 
music recording can be a) an instrument-only segment, 
b) a solo-singing segment, or c) an overlapping-
singing segment. To simplify the problem, the test 
recordings used in this study are either b) or c), with 
the overlapping duration percentages of 0% or 100%, 
respectively.  

iii) Overlapping energy ratio. As in many bands, one or 
more musicians in addition to the lead singer often 
sing background vocal while they play their 
instruments. The audio signal energy of the 
background singer(s), therefore, may be very low 
compared to that of the lead singer. In such a case, 
identifying the background singers would be more 
difficult. For this preliminary study, no test recordings 
have background singers, and the singers in our test 
recordings all sing with roughly equal signal energies. 

iv) Tune/lyrics variations. Multiple singers performing 
simultaneously may sing in a) exactly the same tune 
and lyrics, b) exactly the same tune but different lyrics, 
c) different tunes but exactly the same lyrics, or d) 
different tunes and different lyrics. We consider only 
cases a) and d) for this study. 

v) Background accompaniment. A majority of popular 
music contains background accompaniment that 
inextricably intertwines singers’ voice signals with a 
loud, non-stationary background music signal. During 
this initial stage of the development, we do not attempt 
to solve the problem of background interference but 
only deal with vocal music that has no background 
accompaniments. 

vi) Open-set/close-set. The OSID problem at hand is a 
close-set classification problem, which identifies the 
singer(s) among a set of candidate singers. This study 
does not discuss the problem of open-set classification, 
which determines whether the singer(s) identified 
is/are among the candidate singers performed in a set 
of test recordings. 

vii) Audio quality. Although most test recordings are 
taken from high quality sources such as CDs, many 
often undergo signal degradation due to audio filtering, 
encoding/decoding, or noise corruption. A successful 
OSID system should be robust against various signal 
distortions. This study, however, places this issue 
aside because audio quality is an inevitable problem 
for most music classification research. The music data 
we use for this study are all of high-quality audio 
recorded on PC. 

4. DATA 

Since no public corpus of music recordings meets the 
specific constraints of the OSID problem defined here, a 
small database of test recordings was created. The 
database contains vocal recordings by ten male amateur 
singers, aged between 20 and 35. Every singer was asked 
to perform 30 passages of Mandarin pop songs with a 
Karaoke machine. The duration of each passage ranges 
from 13 to 20 seconds.  

The database was divided into two subsets, one for 
training the OSID system and the other for evaluating the 
system. The training subset consists of the first 15 
passages, while the evaluation subset consists of the 
remaining 15 passages. Passages of the pop songs were 
recorded in a quiet room. The Karaoke accompaniments 
were output to a headset, and thus not recorded. All the 
passages were recorded at 22.05 kHz, 16 bits, in mono 
PCM wave. 

Test recorindgs of duets were then obtained by mixing 
the wave files sung by a pair of singers. Two sets of 
recordings (i.e., for training and evaluation), sung by 45 
(C2

10 
=45) different pairs of singers, were created. One set 

included 675 (C2
10

  15 =675) recordings of duets sung in 
exactly the same tune and with the same lyrics; the other 
set included 4,725 (C2

10
  C2

15
 =4,725) recordings of duets 

sung in different tunes and with different lyrics.   
To facilitate the discussions in the following sections, 

thereafter, recordings of duets sung in exactly the same 
tune and with the same lyrics are referred to as “STSL 
duet recordings.” Similarly, recordings of duets sung in 
different tunes and with different lyrics are referred to as 
“DTDL duet recordings.” 

5. METHODOLOGY 

Following the most popular paradigm of stochastic pattern 
recognition, we propose two approaches to OSID system 
design.  

5.1. Two-Stage OSID System 
 
Figure 1 shows the block diagram of our two-stage OSID 
system. The system first consists of a “Solo/Duet 
Recognition” component. If a solo singing is recognized, 
the problem becomes the conventional single singer 
identification. If a duet singing is recognized, a “Duet 
Singer Identification” component handles the case. Each 
of the components in this system is a Gaussian mixture 
classifier [9]. 
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Figure 1. Two-stage OSID system. 
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5.1.1. Solo/Duet Recognition 

Figure 2 shows the block diagram of the “Solo/Duet 
Recognition” component. The component is divided into 
two phases: training and testing. During the training phase, 
two Gaussian Mixture Models (GMMs), s and d, are 
created, where s represents the acoustic pattern of a solo 
singing passage while d represents the acoustic pattern of 
a duet singing passage. Combinations of Gaussian 
densities generate a variety of acoustic classes, which, in 
turn, reflect certain vocal tract configurations. The GMMs 
provide good approximations of arbitrarily shaped 
densities of spectrum over a long span of time [9]. 
Parameters of a GMM consist of means, covariances, and 
mixture weights. s is generated from all solo singing 
passages and d is generated from all duet singing 
passages. Then prior to Gaussian mixture modeling, 
singing waveforms are converted into Mel-scale 
frequency cepstral coefficients (MFCCs). In the testing 
phase, an unknown test recording is converted into 
MFCCs and then tested for s and d. The results are 
based on likelihood probabilities, Pr(X| s) and Pr(X| d), 
where the recording is hypothesized as a duet singing 
passage (or a solo singing passage) if 
logPr(X| d) logPr(X| s) is larger (or smaller) than a pre-
set threshold . 
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 Figure 2. Solo/Duet recognition. 

5.1.2. Single Singer Identification 

Figure 3 shows the “Single Singer Identification” 
component. If there are N different candidates singers, 
then N GMMs, 1, 2, …, N, are created to represent the 
acoustic patterns of their singings. When an unknown 
recording is received at the system input, the component 
calculates and decides in favor of singer I* when the 
condition in Eq. (1) is satisfied: 

)|Pr(maxarg
1

*
i

Ni

I X   (1) 

5.1.3. Duet Singer Identification 

The “Duet Singer Identification” component is similar to 
the “Single Singer Identification” component. The only 
difference between the two is that the GMMs of solo 

singers are replaced with the GMMs of pairs of singers. 
However, generating the GMMs of pairs of singers is not 
as straightforward as generating the GMMs of solo 
singers, because it may be impractical to collect singing 
data from every possible combination of pairs of singers. 
Hence, two approaches were taken to sidestep the 
collection of real simultaneous singing data. The first 
approach uses direct waveform mixing, which is shown in 
Figure 4.  
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Figure 3. The “Single Singer Identification” component. 
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Figure 4. The “Duet Singer Identification” component 
using direct waveform mixing. 

 
In the training phase of this system, audio waveforms 

from every pairs of singers are mixed, based on roughly 
equal energies, to simulate real duet singings. The 
resulting waveforms are then converted into MFCCs. For 
each pair of singers, a GMM is built using these features. 
Hence, for a population of N candidate singers, a total of 
C2

N
 = N! / [2!(N 2)!] singer-pair GMMs i,j, i  j, 1  i, j  

N are created. In the testing phase, an unknown audio 
recording is converted into MFCCs and then tested for 
each of the C2

N
 GMMs. The system then determines the 

most-likely singer pair (I*, J*) performed in the recording 
based on the maximum likelihood decision rule: 

).|Pr(maxarg),( ,
,,1

**
ji

jiNji

JI X   (2) 

One shortcoming of the direct waveform mixing 
approach is that the training process can become very 
cumbersome if the number of candidate singers is large or 
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if a new singer needs to be added. As an alternative to this 
problem, a second approach based on Parallel Model 
Combination (PMC) technique [10] is used, as shown in 
Figure 5. Given a set of N solo singer GMMs, each GMM 
is used to generate C2

N
 singer-pair GMMs. Since duet 

singing signals overlap in the time/frequency domain 
while the GMMs are in the cepstral/quefrency domain, the 
parameters of the GMMs need to be converted to the 
linear spectral/frequency domain before they can be added.  

In addition, since two K-mixture GMMs would 
result in a large K K-mixture GMM, UBM-MAP [11] is 
used to control the size of the resulting GMM K-mixture. 
The basic strategy of UBM-MAP is to generate a 
universal GMM using all solo singers’ data, and then 
adapt the universal GMM to each solo singer GMM based 
on maximum a posterior (MAP) estimation. Since all of 
the solo singer GMMs are adapted from the universal 
GMM, the mixtures of the GMMs are aligned. Thus, we 
do not need to consider the combination of the k-th 
Gaussian of one GMM with the -th Gaussian of another 
GMM, where k  , but we only need to consider the case 
when k = . For a pair of singers i and j, the combined 
mean and covariance of the k-th mixture is computed by  

i ,
 k

j = D{log{ exp(D-1
i

k
) + exp(D-1

j
k
) }},   (3) 

i,
 k

j = D{log{exp[D-1
i
k
(D-1) ] + exp[D-1

j
k
(D-1) ]}},  (4) 

where i
k
 and i

k
 are the mean vector and covariance 

matrix of GMMs i, respectively; D represents the 
discrete cosine transform matrix; prime ( ) denotes the 
transpose. 

 
Passages of the

i-th Singers
i

k

PMC ki,

Gaussian

Mixture Modeling

Feature

Extraction

Passages of the

k-th Singers

Gaussian

Mixture Modeling

Feature

Extraction

 

Figure 5. The training phase of “Duet Singer 
Identification” component based on parallel model 

combination. 

5.2. Single-Stage OSID System 
 
As an alternative approach, we present a second system 
that combines the three components in the Two-Stage 
OSID system. The system unifies the three components 
into a Single-Stage system, eliminating the stage of first 
determining if a test recording is a solo or duet singing 
performance. This is done by using the N single-singer 
GMMs from the Single-Singer Identification and the C2

N
 

singer-pair GMMs from the Duet-Singer Identification to 
build a unified classifier with (N + C2

N
) GMMs. In the 

testing phase, an unknown recording is converted into 
MFCCs and then tested for each of the (N + C2

N
) GMMs. 

Then, if we denote each single-singer GMM i as i,i, 1  

i  N, the system should decide in favor of singer(s) (I*,
J*) if the condition in Eq. (5) is satisfied. 

),|Pr(maxarg),( ,
,1

**
ji

Nji

JI X   (5) 

Note that if I* = J*, then the recording is hypothesized to 
be performed by a single singer I*. 

6. EXPERIMENTS AND RESULTS 

6.1.  Solo/Duet Recognition Experiments 

The first experiment conducted examined the validity of 
the solo/duet recognition component. There were 150 solo 
test recordings, 675 STSL duet test recordings, and 4,725 
DTDL duet test recordings, with a total of 5,550 test 
recordings. The recognition accuracy was measured by 

100%.
Recordings Testing#

Recordings recognizedCorrectly#  

Table 1 shows the recognition results with respect to the 
different numbers of Gaussian mixtures in s and d. We 
can see that most of the recordings were correctly 
recognized. 

No. of Mixtures Accuracy 
16 96.1% 
32 94.2% 
64 95.2% 

(a) Recognition accuracy 

Actual 
Classified Solo Duet 

Solo 99.3% 4.6% 
Duet 0.7% 95.4% 

(b) Confusion matrix of the 16-mixture case
Table 1. Solo/duet recognition results. 

6.2.  Single-Singer Identification Experiments 

For the purpose of comparison, experiments of the 
conventional SID for solo recordings were also conducted. 
The identification accuracy was measured by  

100%.
Recordings Testing#

Recordings identifiedCorrectly#  

Table 2 shows the results of singer identification in 150 
recordings sung by 10 different singers. As the singer 
population was small, the result obtained was almost 
perfect. 

No. of Mixtures SID Accuracy 
16 96.7%  
32 98.7% 
64 100.0% 

Table 2.  Results of singer identification for solo 
recordings. 
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6.3.  Duet-Singer Identification Experiments 

Then the feasibility of OSID in duet recordings was 
examined. In these experiments, test data consisted of 675 
+ 4,725 duet singing wave files, i.e., no solo recordings 
were considered. Here the performances of the direct 
waveform mixing and the PMC methods of Duet-Singer 
Identification component were evaluated.  

Depending on the context of application, the 
performance of OSID is evaluated differently. This study 
considers two types of OSID accuracy. The first one takes 
into account the number of singer pairs identified 
correctly. Specifically, 

100%.
Recordings Testing#

PairsSinger  identifiedCorrectly#
%)(in  1 Acc.  

The second one takes into account the number of singers 
identified correctly. Specifically, 

%.100
Singers Testing#

Singers identifiedCorrectly#
%)in ( 2 Acc.  

For example, if a recording contains simultaneous singings 
by two performers, s1 and s2, and the identified singers are 
s1 and s4, then #Correctly-identified Singer 

Pairs = 0 and #Correctly-identified Singers = 1. 
Consequently, Acc. 2 is always higher than Acc. 1. 

Tables 3 shows the OSID result obtained with direct 
waveform mixing methods. Here, the OSID results for 
four cases are presented: i) both training and testing data 
consist of STSL duet recordings; ii) training data consist 
of STSL duet recordings, while testing data consist of 
DTDL duet recordings; iii) training data consist of DTDL 
duet recordings, while testing data consist of STSL duet 
recordings; iv) both training and testing data consist of 
DTDL duet recordings.  

It can be seen from Table 3 that OSID using STSL duet 
recordings for training always outperformed than those 
that using DTDL duet recordings for training. Similarly, 
the performance of OSID using STSL duet recordings for 
testing was always better than those that using DTDL duet 
recordings for testing. When both training and testing data 
consist of STSL duet recordings, we obtained the best 
OSID performance, showing that 85.0% of singer pairs or 
92.5% of singers in the testing data can be correctly 
identified. 

Tables 4 shows the OSID result obtained with the PMC 
method. In this experiment, since no duet singing is 
required in the training process, we considered two cases: i) 
testing data consist of STSL duet recordings; ii) testing 
data consist of DTDL duet recordings. It can be observed 
in Table 4, that similar to the results in Table 3, the 
performance of OSID was always better when STSL duet 
recordings were used for testing. Comparing Table 4 with 
Table 3 (a) and (b), it can also be found that the direct 

waveform mixing method was superior to the PMC 
method when STSL duet recordings were used for testing. 
However, the PMC method performed better than the 
direct waveform mixing method when DTDL duet 
recordings were used for testing. This indicates that the 
PMC method is not only better at scaling up the singer 
population, but it is also better at generalizing the singer 
identification problem than the direct waveform mixing 
method. 
 

No. of Mixtures Acc. 1 Acc. 2 
16 80.7% 90.1% 
32 84.3% 92.1% 
64 85.0% 92.5% 

(a) Both training and testing data consist of STSL duet 
recordings 

No. of Mixtures Acc. 1 Acc. 2 
16 67.9% 83.7% 
32 69.8% 84.8% 
64 73.6% 86. 7% 

(b) Training data consist of STSL duet recordings, while 
testing data consist of DTDL duet recordings 

No. of Mixtures Acc. 1 Acc. 2 
16 77.3% 88.7% 
32 78.4% 89.3% 
64 80.7% 90.4% 

(c) Training data consist of DTDL duet recordings, while 
testing data are STSL duet recordings 

No. of Mixtures Acc. 1 Acc. 2 
16 52.3% 75.8% 
32 47.1% 73.4% 
64 43.6% 71.6% 

(d) Both training and testing data consist of DTDL duet 
recordings

Table 3. Results of identifying duet recordings based on 
direct waveform mixing method. 

 
 

No. of Mixtures Acc. 1 Acc. 2 
16 75.1% 87.1% 
32 75.1% 87.3% 
64 78.1% 88.7% 

(a) Testing data consist of STSL duet recordings 

No. of Mixtures Acc. 1 Acc. 2 
16 71.1% 85.0% 
32 69.9% 85.0% 
64 75.3% 87.6% 

(b) Testing data consist of DTDL duet recordings
Table 4. Results of identifying duet recordings based on 

PMC method. 
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6.4. Singer Identification Experiments: Solo and Duet 
Recordings

Lastly, for a more realistic case, a test recording, which 
may be either a solo singing or duet singing, was tested. 
There were 150 solo test recordings, 675 STSL duet test 
recordings, and 4,725 DTDL duet test recordings, with a 
total of 5,550 test recordings. The identification 
performance was characterized by Acc. 1 and Acc. 2, as 
before. However, if a recording contains only single singer 
s1 but the system hypothesizes two singers s1 and s4, then 
#Correctly-identified Singer Pairs = 0 and 
#Correctly-identified Singers = 1.  

Table 5 shows the results obtained by the proposed 
two OSID systems. The singer-pair GMMs used in this 
experiment were generated using the PMC method. The 
number of Gaussian mixtures was set to 64 for both solo 
singer and singer pair GMMs. Compared to the results in 
Table 4, it is observed that while more uncertainties are 
added in the testing data, the resulting accuracies only 
decrease slightly. In addition, it is also found that the Two-
Stage OSID system performed better than the Single-Stage 
OSID system. This indicates that although the Single-
Stage OSID system takes advantage of the simplicity in 
design, it pays the loss of accuracy that can be achieved 
with the Two-Stage OSID system. 

System Acc. 1 Acc. 2 
Two-Stage OSID System  76.2% 88.1% 

Single-Stage OSID System  73.0% 87.9% 

Table 5. Results of identifying both solo and duet 
recordings.

7. CONCLUSION 

This paper examined the feasibility of overlapping singer 
identification and compared two approaches to the 
problem of detecting and identifying singers in duet 
recordings. The research presented here extends previous 
works on singer identification. The systems proposed up-
to-date only focus on the identification of singers in solo 
recordings. In reality, many music recordings involve 
multiple singers such as duet love songs, gospel music, or 
folk and country music. Encouraging results arrived at 
this initial stage of investigation laid a good foundation 
for the future development of a robust automatic singer 
identification system. Regarding future work, a wider 
variety of music will be acquired to scale up and further 
test the system.  
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