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QUANTIFYING METRICAL AMBIGUITY

Patrick Flanagan

ABSTRACT

This paper explores how data generated by meter induc-

tion models may be recycled to quantify metrical ambigu-

ity, which is calculated by measuring the dispersion of met-

rical induction strengths across a population of possible me-

ters. A measure of dispersion commonly used in economics

to measure income inequality, the Gini coefficient, is intro-

duced for this purpose. The value of this metric as a rhyth-

mic descriptor is explored by quantifying the ambiguity of

several common clave patterns and comparing the results to

other metrics of rhythmic complexity and syncopation.

1 INTRODUCTION

This study initially grew out of an interest in modeling lis-

tener responses of a tapping study in which listeners tapped

to the beat of sections of Steve Reich’s Piano Phase [17].

For some sections, tapping rate and phase varied widely

among listeners, and for others they displayed relative con-

sistency. Accordingly, the goal of the study was to model

metrical ambiguity as the degree of variety of listener re-

sponses to a given rhythm.

This task, however, would be complicated by a lack of

simplified experimental data; the experiments of [17] in-

volved pitched music, which added a layer of complexity

I wanted to avoid. I therefore turned my attention to a corol-

lary kind of metrical ambiguity, which is the amenability of

a rhythm to gestalt flip, in which a listener reevaluates the

location of the beat. This amenability has been convinc-

ingly advanced as one reason for the pull of African and

African-derived rhythms on listeners [7]. Data on metrical

gestalt flips is no easier to come by, but orientating the study

around the proverbial average listener instead of groups of

listeners allowed it to interface with the voluminous litera-

ture on syncopation. While metrical ambiguity is not equiv-

alent to syncopation, the results of this study suggest that it

roughly correlates to syncopation and offers an interesting

rhythmic descriptor in its own right that could be used for

theoretical analysis, genre classification, and the production

of metrically ambiguous music.

To describe the ambiguity of the metrical scene, the am-

biguity model recycles data that existing models of meter

and beat induction often discard, the data about the induc-

tion strengths of all potential meters. The central idea of the

model is that a more even distribution of induction strengths

across a group of potential meters will cause greater am-

biguity in the perception of meter. The model of ambigu-

ity, therefore, requires a model of meter induction that, for

a given rhythm, produces numerical values for an array of

potential meters, with each meter defined by its period and

phase relation to some arbitrary point in the rhythm. For the

sake of simplicity, this study uses a hybrid model based on

older models of meter induction that operate on quantized

symbolic data, but the theory of ambiguity presented here

is extensible to any model, including those that work with

audio, that produces such an array.

In this paper the term “meter” refers to an isochronous,

tactus-level pulse, characterized by a period and phase ex-

pressed in discrete integer multiples of some smallest unit of

musical time. The more common term for this isochronous

pulse is, of course, “the beat.” “Meter,” however, is the

preferable term because this paper uses the conventionally

understood downbeat of musical examples as a reference

point for the tactus-level pulse.

2 METER INDUCTION MODEL

2.1 Influences on the Model

While the intent of this paper is not to advance a new model

of meter induction, the existing models are either too com-

plex for the purposes of this study or otherwise flawed. I

therefore employ a hybrid meter induction model that calcu-

lates an induction strength for each candidate meter by sum-

ming the values of phenomenal accents that a given meter

encounters, a strategy inherited from [12; 9; 2; 10]. Parn-

cutt’s model is the most sophisticated of the four in that it

incorporates durational accent and tempo preference. For

this reason, I largely adopt Parncutt’s model.

Parncutt’s model, however, has one flaw that prevents its

full deployment in this study. In calculating what he called

“pulse-match salience,” which is the degree of match be-

tween phenomenal accents and an isochronous pulse stream,

Parncutt summed the product of the phenomenal accents

that occur on neighboring pulses. The problem with mul-

tiplying the phenomenal accents that occur on neighboring

pulses is that some rhythms contain no inter-onset intervals

(IOIs) that map onto candidate meters that we know to be

viable meters. In this case, the metrical induction score, or

pulse-match salience, of a viable meter turns out to be 0. For

example, consider the Bossa Nova pattern in Figure 2.

The rhythm contains no inter-onset intervals of 4 tatums

that begin on what, according to musical practice, is the
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beat. There is one IOI of 4 tatums in the middle of the pat-

tern, but it is shifted by 2 tatums off the beat. The pulse-

match salience as calculated by Parncutt’s formula for what

is conventionally understood as the meter of this rhythm is 0,

which clearly is not a desirable result. This problem did not

crop up in Parncutt’s article because the rhythmic patterns

he investigated are relatively simple and unsyncopated and

therefore have at least one IOI that coincides with a reason-

able metrical candidate. As discussed below, the model pre-

sented here avoids this problem by summing the phenome-

nal accents that coincide with a candidate meter regardless

of their adjacency.

2.2 The Meter Induction Algorithm

The model first describes a rhythmic surface as a series of

values indexed to the tatums of the rhythm, with 0s signify-

ing a rest or continuation of a previously attacked note and

non-zero values signfiying phenomenal accents. The model

follows that of Parncutt and uses only durational accent in

modeling phenomenal accent and is calculated as

Ad (T ) =
(

1− exp
(−IOI (T )

r

))i

(1)

where T refers to the index of an event in tatums, exp is the

natural exponential function, IOI(T) is the duration in mil-

liseconds of the IOI from the onset at tatum T to the next

onset, r is the saturation duration, and i is the accent index.

Calculating IOI(T) requires fixing the speed (i.e., tatum du-

ration), which is set to 200 ms for the examples in this paper.

Saturation duration is the threshold of short term auditory

memory, beyond which point lengthening the duration of

an IOI will increase only marginally its durational accent.

Parncutt, by optimizing the value of r to fit his experimen-

tal results, arrived at 500 ms, and I adopt this value in the

model. The free parameter i magnifies the difference in ac-

cent between long and short durations. I follow Parncutt in

setting it to 2.

The next step is generating the meters that will be tested

against the accent vector. The model follows [11] in using

only those meters with a period that is a factor of the length

of the accent vector and excludes meters with extremely fast

or slow tempos. Each candidate meter is further character-

ized by its phase, which is measured from index 0 of the

accent vector. The preliminary induction strength S for me-

ter m, characterized by period P and phase Q, over Ad, can

then be calculated as

Sm =
1
n

(
n−1∑
i=0

Ad (Pi + Q)

)
(2)

where n is the number of beats of the meter that occur in

the pattern. It is equal to the pattern length divided by the

period of the meter. Multiplying the sum of accents by the

reciprocal of n normalizes the induction strengths with re-

spect to period length. As Parncutt noted, normalizing for

period length allows us to explicitly introduce a model of

human tempo preference, which numerous researchers have

fixed at 600 ms [5]. Parcutt formalized tempo preference as

Sp = exp

(
−1

2

(
1
σ

log10

( p

u

))2
)

(3)

where Sp is the induction strength for period p of the meter

and u and σ are the free parameters representing the pre-

ferred tempo and the standard deviation of its logarithm.

Here I depart from Parncutt and use the commonly observed

values of 600 ms and 0.2, respectively.

Incorporating the model of tempo preference into the in-

duction strength model yields

S′
m = SmSp (4)

Applying (4) to the Bossa Nova pattern of Figure 2, assum-

ing a speed of 200 ms, yields induction strengths for 16 dif-

ferent candidate meters, which are presented in the bar chart

of Figure 1, ordered from lowest induction strength to high-

est. The next task is to quantify the evenness of this distri-

bution.
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Figure 1. Induction strengths of the Bossa Nova pattern,

ordered lowest to highest, with speed set to 200 ms.

3 THE GINI COEFFECIENT

Statisticians have developed a number of tools for quantify-

ing the evenness of a distribution of values. One of them,

the Gini coefficient, has gained popularity in economics as

a measure of income inequality because it is easy to inter-

pret and its value is independent of the scale of the data

(i.e., unit of measurement) and the sample size. For this

study, the inequality of the dispersion of induction strengths

across a population of candidate meters is calculated. In the

formula’s discrete version, for a population P of n candidate

meters with induction strengths calculated from (4), the Gini

coefficient can be calculated as

G(P ) =

∑n
i=1

∑n
j=1 | xi − xj |
2n2μ

(5)

where μ is the mean induction strength, and xi and xj are

induction strengths of the candidate meters. It produces
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values with a range of 0 to 1, where 1 signifies perfect in-

equality and 0 signifies perfect equality. In music theoretical

terms, lower values denote greater metrical ambiguity, and

vice versa. In practice, values for metrical ambiguity range

from the high 0.20s for high metrical ambiguity up to the

mid 0.70s for low metrical ambiguity. With the necessary

tools in hand, we may now proceed to assess the metrical

ambiguity of some rhythms.

4 METRICAL AMBIGUITY AND CLAVE
RHYTHMS

4.1 Comparison to Syncopation Measures

Thus far the Gini coefficient has been described as a mea-

sure of metrical ambiguity, which is not necessarily syn-

onymous with rhythmic complexity or syncopation. A fast

isochronous pulse stream is metrically ambiguous because it

is amenable to subjective rhythmization, but it is also rhyth-

mically simple. Nevertheless, it is fruitful to compare the

Gini coefficient to existing measures of syncopation.

Toussaint has tested several metrics of complexity and

syncopation against clave rhythms in [16; 15], with partic-

ular attention paid to six of the most popular 4/4 timelines:

the Bossa Nova, Gahu, Rumba, Soukous, Son, and Shiko

patterns (Figure 2). Histograms of the induction strengths

according to (4), ordered lowest to highest, of each rhythm

with a moderate tatum duration of 200 ms are presented in

Figure 3 (except for the Bossa Nova pattern, the histogram

of which is presented in Figure 1). Note that the bars are

labelled by their period and phase, and that the candidate

meter that is most commonly understood to orgranize the

rhythm in musical practice is 4,0. A simple visual inspec-

tion of the histograms reveals variation in the evenness of

the distribution of induction strengths; to the eye, Shiko is

the most uneven, and Bossa Nova the most even. As one

would expect, these differences are reflected in the Gini co-

efficients of each rhythm, which are displayed in the first

row of Table 1 alongside several metrics of rhythmic com-

plexity and syncopation. In reading Table 1, be mindful that

the Gini coefficient measures inequality of metrical induc-

tion strengths and therefore is inversely related to metrical

ambiguity. A low value implies higher metrical ambiguity.

A word about the different metrics of complexity in Table

1. “Gini Syncopation” is derived from the Gini coefficient

as explained in section 4.2. Michael Keith’s measure of syn-

copation assigns each note to one of four categories: unsyn-

copated, hesitation, anticipation, and syncopation. Each cat-

egory is associated with a different value or degree of syn-

copation, and the total syncopation of a passage equals the

sum of its constituent notes’ values. The reader is referred to

[15] for more information. Pressing’s measure [13] is sim-

ilar in that it parses a rhythm into six basic units and sums

their values.

(a) Bossa Nova (b) Gahu

(c) Rumba (d) Soukous

(e) Son (f) Shiko

Figure 2. Six common 4/4 timelines.

Bossa Gahu Rumba Soukous Son Shiko

Nova

Gini 0.583 0.719 0.679 0.683 0.679 0.803

Gini 0.894 0.841 0.733 0.876 0.571 0.492

Syncopation

Keith 3 3 2 3 2 1

Off-Beatness 2 1 2 2 1 0

Pressing 22 19.5 17 15 14.5 6

Metrical 6 5 5 6 4 2

Complexity

LHL 6 5 5 6 4 2

WNBD 4 3.6 3.6 3.6 2.8 1.2

Table 1. A comparison of measures of rhythmic complexity

and syncopation for six clave rhythms.

Two different measures of rhythmic syncopation were

proposed in [15]. The first is off-beatness, which is equal

to the number of onsets that occur at indices of the mea-

sure that share no factors other than 1 with the length of the

measure (a measure in usually indexed in 16th notes). The

second measure of syncopation, called “metrical complex-

ity,” employs the metrical accent grid of [6]. In this scheme,

the level of syncopation is related to the coincidence of on-

sets and shallow levels in Lerdahl and Jackendoff’s metrical

accent grid. The Longuet-Higgins Lee syncopation measure

(LHL) also employs a metrical accent grid while consider-

ing whether an onset is followed a rest (or continuation) or

another onset [8]. Finally, the Weighted Note-to-Beat Mea-

sure (WNBD) relates syncopation to the distance from each

onset to the nearest beat [4].

The extreme Gini values in Table 1 correspond well to the

other metrics of syncopation and to intuition; Bossa Nova

is the most syncopated pattern and Shiko the least. Most

of the metrics, however, have different interpretations of

Gahu, Soukous, Son, and Rumba. According to [16], the

patterns should be ordered in decreasing degree of syncopa-

tion as Bossa Nova, Gahu, Rumba/Soukous, Son, and Shiko,

which is exactly the order of Pressing’s model. I would have
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Figure 3. Histograms of the induction strengths of potential

meters of five additional clave patterns. The two numbers

below each bar represent the period and phase of a candidate

meter.

to quibble with the assesment of Gahu as the second most

syncopated pattern. The adjacency of the last two notes

of Soukous, a uniquely tight spacing among the patterns,

makes the pattern sound more syncopated by accenting the

last onset, which is not on the beat, in two ways. First, the

tight spacing of the fourth and fifth onsets and the relatively

long IOI before the fourth onset makes the fourth onset func-

tion as a kind of pick-up to the fifth. Second, the last onset

receives additional accent by virtue of the long inter-onset

interval that follows it, which at five tatums, is the longest

IOI of any of the patterns. The combined effect of the fourth

onset functioning as a pick-up and the durational accent of

the first onset lend strength to hearing the fifth onset as on

the beat, an effect which, because the fifth onset is not on the

beat, gives the rhythm a strongly syncopated feel. Gahu, by

contrast, confirms the location of its “true” meter by plac-

ing its shortest IOI of two tatums between the last and first

onsets. This eighth note IOI provides a pick-up into the real

downbeat.

Clearly, experiments should be carried out to settle the

matter, but for the sake of argument, let us bump Soukous

ahead of Gahu on the syncopation scale. It would then read

Bossa Nova, Soukous, Gahu, Rumba, Son, and Shiko. This

slight rearrangement does nothing to help the Gini coeffi-

cient as a model of syncopation because it still ranks Son

and Rumba as more complex than Soukous and Gahu. The

reason it does this, however, is that it does not measure the

metrical ambiguity of these particular rhythms but of the

beat-class set types to which they belong. The Gini coeffi-

cient has no conception of a rhythm in a particular metrical

context, whereas the other metrics assess a rhythm against

a predetermined metrical framework, which listeners in real

musical situations may infer from cues such as harmony and

melody or other instruments. To this extent, comparing the

Gini coefficient to the other metrics is comparing apples and

oranges. As we shall see, using the Gini coefficient to de-

scribe beat-class sets is illuminating in certain contexts, but

a metric of rhythmic complexity or syncopation should be

able to distinguish a series of quarter notes that are on the

beat from a series of quarter notes that are off the beat. The

Gini coefficient does not do this.

4.2 From Metrical Ambiguity to Syncopation

There is a solution to this problem that, while adding ad-

ditional mathematical complexity to an equation that is al-

ready far removed from the surface phenomena of the mu-

sic, does at least correspond to our intuitions while offer-

ing several advantages over the existing metrics of rhythmic

complexity and syncopation. The reason Gahu and Soukous

are incorrectly assessed by the model is that it pays no heed

to the relatively low induction score given to the meter that

contextualizes the rhythm in musical practice (by definin-

tion, the candidate meter 4,0). Indeed, one striking feature

of Figures 2 and 4 is that for three of the rhythms (Bossa

Nova, Gahu, and Soukous), the meter 4,0 is not even close

to having the highest induction strength. A metric of synco-

pation should reflect this.

What is needed, then, to transform the Gini coefficient

into a metric of syncopation in the mold of the others is a

way of incorporating information about the strength of the

meter understood to be the real meter relative to the other

candidate meters. Furthermore, to aid comparison to other

metrics, the score should increase with syncopation. The

relative strength of the actual meter, 4,0, in comparison to

the others can be neatly measured as its ranking, r, in the or-

der list of induction strengths, and is set equal to the number

of other meters that have an induction strength greater than

or equal to that of the actual meter. Thus for Bossa Nova

and Soukous, for example, r equals 5. We can use the recip-

rocal of r and the Gini coefficient to calculate a measure of
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syncopation. For an accent vector Ad that produces a pop-

ulation P of meter induction strengths, its syncopation Sync
may be described as

Sync(Ad) = 1−
(
G(P )(1− e−

1
r )
)

(6)

Inputting the values for the Gini coefficient and meter in-

duction strengths calculated above yields the scores in the

second row of Table 1.

These values correspond with what I have argued above

is the most reasonable ranking of the patterns. This metric

enjoys two other advantages over the others. The first is that

it is invariant to scale. The other metrics invariably increase

with the length of the rhythm being measured, making it

impossible to compare rhythms of different lengths. The

syncopation measure proposed here, on the other hand, al-

ways produces a value between 0 and 1. Second, it has a

much finer grain of discrimination than the others. On the

downside, it depends on a large number of free parameters,

a circumstance that prevents fixing a final value for the syn-

copation of a rhythm conceived in the abstract; there is no

single score for the Bossa Nova pattern. This fault could,

however, be turned into an advantage if it allowed analysts

to probe the effects of tempo and various kinds of phenom-

enal accent on syncopation.

4.3 Correspondence to Experimental Results

In [14], Spearman rank correlations were calculated between

the experimental data of [12] and [3], which measured the

difficulty of performing a set of rhythms, and the values

produced by various models of syncopation for the same

rhythms. The correlations give an indication of how well

the models predict performance difficulty, which is assumed

to be a reasonable proxy for syncopation. For the models

tested, which were those listed in Table 1 (excluding the

Gini coefficient models presented here), correlations ranged

from 0.224 to 0.787. The procedure of [14] was repeated for

the Gini coefficient and the Gini syncopation metrics, with

the following results: The Gini coefficient showed correla-

tions of 0.51 and 0.42 for the data of [12] and [3], respec-

tively. The Gini syncopation measure produced correlations

of 0.56 and 0.51.

These figures should treated cautiously. The Essens study

[3] was a small experiment with only six participants and

high p-values (i.e., low confidence). That said, the results

indicate that the Gini coefficient and Gini syncopation mea-

sure are decent but not good predictors of performance diffi-

culty. Considering that the best performing models in [14],

the LHL and metrical complexity models, operate in refer-

ence to a full metrical hierarchy, one could speculate that

the performance of the Gini measures could be improved by

replacing the modified Parncutt beat induction model with

one that uses a metrical hierarchy. It is also noteworthy that

these same two models produced rankings of the six clave

rhythms in Table 1 that agree with my own assessment and

that of the Gini syncopation measure.

5 METRICAL AMBIGUITY OF BEAT-CLASS SET
TYPES

The concept of the beat-class set was (re)introduced in [1]

in order to analyze the properties and transformations of

rhythmic material in Steve Reich’s phase-shifting music (the

concept originated in Babbitt’s timepoint system). At issue

in [1] was the transformational potential of rhythmic ma-

terial, a topic that the Gini coefficient addresses because it

describes how amenable a beat-class (bc) set type might be

to various metrical interpretations. To investigate what the

Gini coefficient might reveal about metrical ambiguity and

beat-class sets, Gini coefficients for all mod 12 bc set types

at three different speeds were calculated.

The most striking feature of the results is that the bc types

with the highest ambiguity are those formed by one of the

generator cycles of the modulo 12 system, the 5- (or 7-) cy-

cle, the generator of the diatonic scale. In another interesting

twist, if one skips applying rules for phenomenal accent and

calculates induction strengths over an accent vector of 1s

and 0s, the Gini coefficients of bc set types are invariant un-

der M operation. Under M operation, the 5 cycle transforms

into the 1-cycle, which means that, at least when accent rules

are ignored, the two most famous scales of Western music,

when transformed into rhythms, also turn out to be, at least

according to the model developed here, the most metrically

ambiguous bc set types. It might seem surprising that the

dispersion of values produced by this model of meter in-

duction, which was designed to reflect human preference

for aligning isochronous downbeats with note onsets, would

intersect so directly with set theory, but the explanation is

almost intuitive.

By definition, the candidate meters have periods that are

factors of the length of the meter. The generators cycles, by

definition, have periods that are prime relative to the length

of the meter and therefore prime relative to the periods of

the candidate meters. The relative primeness of the candi-

date meters and the cycle generators ensures that the gener-

ator will cycle through all of the meters of a different phase

and the same period before coinciding with the same me-

ter twice. This cycling over candidate meters produces the

most even distribution of onsets among the candidate me-

ters, which in turn assures a low Gini coefficient.

It should be obvious from the status of cycle 1 generated

beat-class sets as highly ambiguous that maximal ambigu-

ity is hardly a guarantor of musical interest. As Cohn [1]

noted in a parenthetical aside, these sets are “inherently less

interesting for other reasons as well, although to articulate

these reasons is not an easy task.” One possible reason is

that while bc sets generated from the 1-cycle are metrically

ambiguous, their grouping structure is all too obvious. The
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maximally even dispersion of onsets in the 5-cycle gener-

ated sets creates the potential for ambiguity of grouping as

well as metrical structure, allowing grouping and metrical

structures to interact in interesting ways. Alternatively, per-

haps the maximally even sets are more interesting because

they constantly flip the beat around, forcing the listener to

retrospectively reevaluate the location in the metrical grid

of what has already been heard. In this sense, the metrical

ambiguity of maximally even rhythms is like that of the fa-

miliar visual phenomenon, in which the image of two faces

opposite one another can be flipped to the background to

produce an image of a vase. The perceptual gestalt is fragile

but clearly delineated. The 1-cycle generated rhythms are

more like looking at a fuzzy image. The gestalt is not so

much ambiguous as amorphous. To be precise, their metri-

cal structure is amorphous while the larger scale grouping

structure is clear. One is confronted with a blob of notes

followed by silence, a sonic image both blunt and vague.

6 CONCLUSION

The use of the Gini coefficient to quantify metrical ambigu-

ity holds promise as a means to assess the syncopation of

short, repeated rhythmic patterns and the perceptual quali-

ties of beat-class set types. While a model of meter induc-

tion, based on older models, was introduced here for the

purpose of creating input data for the Gini coefficient, the

principle of using a dispersion of probabilities over candi-

date meters to calculate metrical ambiguity is in no way de-

pendent on this model of meter induction. It may be fruitful

to apply this principle to data from the more recent mod-

els that work with audio in order to use metrical ambiguity

as a rhythmic descriptor of audio tracks. As it stands, the

Gini coefficient may help analysts discuss rhythmic mate-

rial in repetitive compositions and possibly serve as a utility

for composers and other creators of rhythmically complex

music.
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